
1

Statistical Foundations for the 
Validation of Computer Models

Contents
Statistical Framework

Issues

experimental design

data analysis

inference

-------------------

Case Study -- RGE

V&V Foundations Workshop

October 22, 2002

Robert G. Easterling1

consulting statistician

James O. Berger2

working statistician

1work supported by Sandia National Laboratories, Albuquerque, NM
2work supported by GM and NSF



2

Introduction
• Computational Predictions -- Inquiring minds 

want to know:
– How well does the computer model represent 

reality?

– How well can the computer model predict reality 
under untried conditions?

• Answers from: “MODEL VALIDATION”
– comparisons of computations to data 

» (field or experimental)
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Statistical View of Model Validation
• Essence of Model Validation 

– Comparison of computations to data

• This implies
– design of experiments - to generate the right 

data
– data analysis - to extract and communicate the  

information contained in the data

• Thus, model-validation is fundamentally 
statistical
– (that’s why we’re here)



4

Some Additional Motivation 
National Academy of Sciences report on 

statistics, testing, and defense acquisition, 
[Cohen et al. 1998]:

“Given the critical importance of model 
validation.. ., it is surprising that the 
constituent parts are not provided in the 
(DoD) directive concerning … validation.  A 
statistical perspective is almost entirely 
missing in these directives.”
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Goal: 
• Our goal is to be able to characterize a 

model’s ‘predictive capability’ with statements 
like --
– Our understanding of the underlying science, our ability 

to translate that understanding to a computational 
model, and an analysis of a robust set of experiments 
and corresponding calculations indicate that actual 
system performance is quite likely to be within P% of the 
computational prediction for the application of interest.

» Then, e.g., if the computational prediction plus P% is 
less than the failure threshold, we can “confidently” 
declare that the system meets its requirement.
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Goal, cont.
• Use the results of a suite of model-validation experiments 

and computations to evaluate a computational model’s 
“predictive capability” 
(“the degree to which a model represents the real world”)

• Constraint: The experimental region may not be the same 
as the application region, for which predictions are the 
objective.
– Example.  lab expts. on mock-ups vs. real device in field

• Evaluation should be:
– credible, defensible, communicable, …

»(“Don’t give me no stastistics, Meathead.  I want facts!” Archie 
Bunker)

• How do we (hope to) achieve the goal?
– process: following slides
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Mathematical Set-up:
Let x be a vector that defines an event of 

interest, often a system and the environment 
to which it is subjected; e.g.,
– experiment 

» x: hit an instrumented missile nose cone with a 500lb. 
hammer

– application
» x: subject a missile to hostile in-flight environment

• Let y be event outcome 
– e.g., stress on key missile parts
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Mathematical Set-up, cont.
Computational Model:

– yM(x) = M(x:ϕ),  where 
– x = event-defining variables
– ϕ = model parameters (constants in the 

equations within M):
» e.g., material properties of nose cone and 

hammer, damping coeffs., …

Notes.
x, yM, and ϕ are all possibly vectors or fields.  
Focus on deterministic M, but for stochastic M, yM could be 
vector of realizations from a probability distribution
Computational parameters (e.g., grid size, convergence criteria)
are included in the specification of M.
Assume that M has been ‘verified.’ It is deemed validation-
ready
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Statistical Set-up:
• Conduct experiment at x 

• Experimental outcome: y(x) = y(x,w),
– where w = unmodeled variables that influence nature’s 

outcome
– statistical model: w varies randomly across expts.

» w has unknown probability distribution
– y(x) is a “realization” of the random variable, y(x,w)

» (“true” outcome, not measured -- see next slide)
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Prediction Error
• “Prediction Error” at x: 

ex = y(x) - yM(x)    (nature – model)

• Contributors to (random variable) ex:
– random’ effects, w, in nature, not in M 

» Example: M is 2-D model;    nature is 3-D

– systematic differences between nature and M 
» Example: Model is linear in x; Nature is not
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Statistics, cont.
• Measurement Error

– y(x), the “true” experimental outcome is, in general, 
not observable.

– Observed experimental result: 
yE(x) = y(x) + δx,

where δx is measurement error, a random variable 
with an unknown probability distribution that may 
depend on x

» separate “gage studies” or trustworthy 
instrumentation manufacturers provide estimate of 
distribution of δx at selected x-points or regions

• THUS …
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Statistical Framework, Bottom Line
• The resulting statistical relationship between yE(x) and 

yM(x) is:

yE(x) = yM(x) + ex + δx,

where ex and δx are random variables with unknown 
dist’ns. that, in general, depend on x

• The Task (should you choose to accept it) is to 
conduct a suite of experiments and computations that 
provide for a credible, defensible, communicable, …  
characterization of the probability distribution of ex
(for pertinent x-values or x-regions)

Data = Signal + Noise
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Notes
• The addition in the statistical model is conceptual, 

not necessarily arithmetic.
– transformations of x and y can enhance additivity

• It is convenient, but not essential, to pair the 
computational and experimental results on x.  For 
unpaired results, you could fit separate “response 
surfaces,” then compare the fitted response 
surfaces at x’s of interest.
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Evaluating Predictive Capability: Process
• Experimental Design: select a set of x’s at which 

to conduct experiments – {x}
– Note: ultimate objective is to get good idea of ex in 

application environment; nature of exp’t. important

• Run the computational model to predict the 
outcomes of these experiments – {yM}
– objective is “pure” prediction, but boundary conditions 

from experiment may be required as input to the 
computation

• Run the experiments: {yE}

• Analyze the data: {x,yE,yM} in order to:
– estimate the distribution of ex in the experimental 

region
– predict the distribution of ex in the application region
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Graphically, …
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1. Experimental Design
Design and conduct a set of 
experiments and 
corresponding calculations 
(the x-points in Test 
Region, which is defined by 
two meta-variables: 
configuration and 
environment)

3. Inference
Estimate predictive capability 
at untested situations (A-
points in the Application 
region)

2. Data Analysis
Evaluate predictive 
capability {ex} for the 
experiments in the Test 
Region
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Issues -- Experimental Design
Suite of Experiments -- Objectives

– building blocks for inference to application
» single phenomenon -- multi-phenomena

–walk before you run
–synthesis

» application- and model-driven
–esp. w.r.t. environments

– adequately characterize distribution of ex
» give application-like w’s a chance to act
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Statistical Design Considerations:
–distribution of experiments

– explore the X-space efficiently
–number of experiments

▪ precision: choose n to estimate σx within P%
▪ power: choose n to have Q% chance of 
detecting bias of ∆ at x = x0

▪ some replication
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Experimental Design -- Short Takes
• Model-Experiment Compatibility

– x’s in model have to be measurable/controllable in 
experiment

• The need for simplification
– reduce dimensionality of experimentally manipulated x’s

» use computational model to identify (apparently) important 
x’s, x-regions

• The battle of the x’s and w’s
– Modeler: if we put enough x’s into model (i.e., convert 

w’s to x’s), we can drive prediction error to zero
– Experimenter: if you put too many x’s into model, I 

can’t do enough experiments to “validate” zero-error



18

Experimental Design -- Research
• Design of Suites of Experiments?

– single phenomenon -- multi-phenomena
– resource-constrained
– test capability-constrained
– appropriately controlled x’s, appropriately 

uncontrolled w’s

• Simplification?
– but not over-simplification

• Feasibility?
– linkage of application-space to experiment-space
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Technical Issues -- Data Analysis
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• Data: {xi, yE(xi), yM(xi) : i = 1, 2, … n}

– n experiments in the Test Region

Objective: characterize (estimate) the probability 
distribution of prediction error, ex [= y(x) - yM(x)]:

in the test region

Limited, variable data mean that any characterization has 
statistical ‘uncertainty’  
Use statistical concepts such as standard errors of 
estimates and confidence limits on parameters to convey 
the reliability of estimated characteristics of ex
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Issues -- Data Analysis
1. Choice of analysis variable (“predictand”)

• e.g., y may be a time-history of temperatures 
at various locations

• analysis-variable possibilities
• complete temperature vs. time and location profile

• NO: excessive, complex, resource-draining

• “integral” measures, e.g.,
• max Temperature at critical location
• ∆T over critical time period at critical location
• critical ∆T/∆t, …

• YES, if focused on application and requirements
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Issues -- Data Analysis
2. Measures (“metrics”) of predictive capability

– estimated characteristics of distribution of ex, such 
as estimates of:
» bias function, β(x)  (=E{y(x) - yM(x)}
» standard deviation function, σ(x)

– outcomes of tests of hypotheses such as
» H0: b(x) = 0, for x in X0

• Model-Validation is an estimation problem, not a 
hypothesis-testing problem.  

• The analysis outcome is not binary -- e.g., 
“pass/fail”
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Statistical Data Analysis -- Basics
• Model data as observations from some family of 

probability distributions

• Use data to guide choice of statistical model and to 
evaluate goodness of modeling assumptions

• Develop data-based estimates of parameters 
(unknown constants) in the statistical model

• Characterize the precision of such estimates 
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Statistical Paradigm 1
• Frequentist

– use “frequency” properties of statistical models to 
derive and evaluate estimates

Example.

{x,y} data

statistical model (simple linear 
regression):

y = α + βx + e;  e ~ N(0, σ)
Analysis leads, e.g., to:

b = least squares est. of β

se(b) = standard error of b

Frequentist ‘pivotal’ 
relationship:  

In repeated realizations of 
data from this model:

(b-β)/se(b) has a t-
distribution with n-2 
degrees of freedom

Use this relationship to 
identify plausible β values
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Statistical Paradigm 2
• Bayesian

– Add further probabilistic assumptions that the statistical 
model’s parameters (e.g., α, β, σ in lin. regression model) 
are realizations from known ‘prior’ probability distributions

– Derive or approximate the parameters’ ‘posterior’ 
distribution, given the data

• Two Varieties:
– Objective Bayesian -- use innocuous priors and the Bayesian 

machinery to obtain or closely approximate frequentist
results

– Subjective Bayesian -- use ‘informative’ priors that connote 
(someone’s) degree of belief in the parameters

Illustrations of Frequentist and Objective Bayesian 
statistical paradigms to follow
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Dealing with Bias
• If there is an analysis finding of appreciable bias:

– search for, then fix assignable causes in:
» experiment 

– instrumentation, controls, protocol, data reduction, …
» model

– ϕ values, equations, numerics, …
» an additional round of experiments and 

computations may be required to ‘validate’ fixes.

– If unfixable (with available resources) bias 
remains:
» ignore bias (esp. if in conservative direction)
» do bias-corrected predictions
» scrap the model
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Adjustment for Measurement Error
• If, at x, ex and δx are (statistically) independent,

then
var(observed prediction errors) 
= var[yE(x) - yM(x)] = var(ex) + var(δx)

• Thus, data analysis provides estimate of this sum

• Gauge study or trustworthy mfg. data can provide 
estimated variance of measurement error: var^(δx)

• Estimate var(ex) by subtraction
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Issues -- Inference
Inference -- the BIG question: 
Does the prediction-error 
structure have legs?
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Extrapolation requires extending:

a. modeled physics, via yM

theory-supported

b. unmodeled physics - the prediction errors
empirical, judgment-based

Conditional inference:

If the error structure we found in the test region (e.g., 
unbiased, Normally distributed, homogeneous log-prediction-
error variance), holds in the application space, then the 
following prediction-error limits can be inferred: … 
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Special Inference Situations
• Inference in design/development:

– application field data eventually become available
– error data applicable to subsequent modeling cycles

• Some x’s are controlled in experiments, variable in 
application, over the same ranges (e.g., impact 
velocity)
– no extrapolation required
– ‘propagation’ methods discussed below

• Less ambitious objectives
– e.g., Does the model get the sign of the relationship 

between y and x1 right?
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Issue: Success is Not Guaranteed
What if we cannot bridge the inference 
gap?  Possible solutions:

– test in more application-like configurations 
and environments (science)

»extreme example: resumption of underground 
nuclear testing

– redesign system (engineering)
»design out features that are most difficult 
to model

– improve the comp. model (modeling)
– rework the requirements or scenarios 

(program mgt.)
– “softer” methods -- expert opinion: 

E.g. We never saw more than a 25% 
prediction error in the experiments we could 
do, but differences between those conditions 
and the application lead us to think that an 
additional factor of two would be prudent --
i.e., 50% prediction error limit.  Trust us.
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Even if we fail on 
one loop, knowing 
why and what the 
obstacles are is 
useful in deciding 
what next to do.
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Comments
• The possibility of not making the desired inferences 

should not deter us from doing a disciplined suite 
of model-validation experiments and computations
– builds knowledge, confidence
– if nothing else, de-bugs models vs. nature

• Model-validation experimentation has important 
implications in re experimental capability
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Issue: Simplification
• It takes a substantial experimentation and analysis 

effort to build a meaningful “prediction-error map,” 
e.g., σx

^ vs. x.

• Research Agenda: SHORTCUTS!
– dimension reduction: leave some of the x’s in w and 

capture their effects experimentally in ex
we design hardware for testability;
we need to design computer models for ‘validatability’

– simplified X-space:
» focus on subspace of interest; use code to help find 

interesting subspaces
– simplified error maps

» e.g., envelope -- prediction errors are generally less 
than P%

– ...
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Extension: Distribution Prediction
• Suppose x has an assumed probability distribution over 

some set of scenarios 
• Problem is to predict resulting dist’n. of y

• Under the statistical model for y,  
yx = yx

M + ex;    ex ~ (βx, σx),

by the law of total variance:

varx(yx)  =   varx(yx
M) +  Ex(σx

2) (when βx = 0)

• In words:
nature’s variance = model-based var. + extra-model var.
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Comment
For this relationship:

varx(yx)  =   varx(yx
M) +  Ex(σx

2) (when βx = 0)

• Stochastic propagation techniques - estimate the 
first right hand term 

• Model-Validation experiments and analyses -
estimate the second right hand term

• Many “uncertainty” analysts work the first term; 
ignore the second (and claim they’re evaluating 
prediction uncertainty!), thereby underestimating 
variability, thereby overestimating reliability, …

• Both terms are needed for distributional predictions
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Analysis Issue: Putting it all together
• Research Issue: How to combine prediction error 

data/models from different levels to infer prediction 
capability for application?

• One possibility:
– yA

M = M(y1, y2, …, yk)
– yi

M = mi(xi : φi)
– yi = yi

M + ei (from predictive-capability expts. on mi)
– Analysis: propagate estimated ei distributions through M; 

estimate resulting distribution of eA and characterize 
precision of that estimate

• Example: Separate models for:
y1 = stress; y2 = strength

Combined model: 
yA = margin = y2 - y1
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Transition to Case Study
• Abstract concepts need to be made 

concrete via implementation of the 
statistical approach advocated above 
(“facts, not stastistics!”)

• This case study (Easterling only): 
– polyurethane foam degradation in thermal 

environment
– Sandia computational model and suite of 

experiments
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Foam Degradation Case Study
Polyurethane foam -

1. requirement: structural 
support, normal environments
2. role (not requirement): 
insulates system components in 
accident-induced thermal 
environments

Applications: 
system: systems in fires --
x = fuel source, temperature 
profile, orientation, duration, 
weather, system description, 
system-damage state, … 
component: x = system-fire 
induced thermal environment

Models : 
CPUF (foam decomposition)
•Newly developed comp. model, 
•better accounting for foam 
effects

Validation test program --
to date

simulated-component 
experiments - decomp., 
diffusion, radiation

Analysis:

Evaluate predictive capability
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Foam Vaporization Experiments
Nature: Eight experiments in Sandia’s
Radiant Heat Facility:

yE =decomposition-front position 
vs. time, measured via x-ray 
imagery (unconnected dots, plot)

Heat lamp array

Foam

X-ray

Flame
guard

Component

9 cm

Model: M(x:ϕ) = CPUF, where

x = experimental factors, especially: 

base plate temp. (600, 750, 900, 1000C     
-- after 1.5 min. ramp)

ϕ = activation energies for foam  
decomposition, emissivity, …
(obtained from other sources)

yM = calculated decomposition-front 
position vs. time (connected dots)
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Subset of Results
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Plot shows:

computational predictions 
(connected points) and 
experimental results (unconnected) 

for experiments at 600, 750, and 
900C.

Analysis: focus on front velocity (slope of curves) between heat
source and insulated component (1-2 cm)

Eyeball Analysis: Model is OK at 750C, over-predicts velocity at 
900C, under-predicts at 600C.  Issue:

“real” model error or “in the noise?”
The following analysis will substantiate the eyeball analysis
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The Data
Exp. Temp. Heat Orient. Int'l. Comp v̂ M v̂ E e lne

2 750 bottom none 0.246 0.232 -0.013 -0.056
10 750 overhead none 0.234 0.211 -0.023 -0.105
11 750 side none 0.262 0.258 -0.004 -0.014
13 750 side none 0.228 0.215 -0.012 -0.056
15 750 bottom AL cyl. 0.284 0.275 -0.009 -0.030
1 600 bottom none 0.091 0.131 0.039 0.358
14 900 bottom none 0.450 0.349 -0.100 -0.253
16 1000 bottom AL cyl. 0.770 0.558 -0.212 -0.322

Table shows logarithmic error (ln[vE/vM], denoted lne) 
because preliminary analysis led to this transformation 
based on theoretical and potential variance-stabilizing 
properties

First five expts. are nominally the same; variablity of vM

results reflects variability of measured boundary 
conditions
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Analysis 1 --
Characterize Predictive Capability at 750C

Working assumption: the variability of the observed 
prediction log-errors among the 5 experiments at 750C is 
random extra-model variability (primarily specimen-to-
specimen; measurement error info not available, assumed to 
be negligible for sake of illustration):

Analysis: 

summary statistics, lne:  ave = -.05   stdev = .034

evidence of bias?

t = ave/(stdev/√5) = -3.40, on 4df

P(2-tail) = .03*

Fairly strong statistical evidence of bias; may not be 
practically significant, and bias is in conservative direction

*P = Prob(|t4| > 3.40), based on Normal distribution assumption for lne
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Analysis 2 -- Inference to Temp. Extremes
Emulate the inference process by 
extending 750C findings to 600C, 
900C, 1000C

90% prediction interval for future 
log-error:

ave +/- t.05(4)*stdev*√(1+1/n)

= -.05 +/- .080

= (-.13, .03)  

Observed Logarithmic Prediction Errors vs. Temperature
90% Prediction Limits based on 750C Data Overlaid
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Inference, based on (leap-of-faith, judgment-based) 
assumption that the lne distribution is independent of 
temperature over the experimental range: to be consistent 
(@90% level) with 750C data, lne at temp. extremes should be 
in (-.13, .03)

Finding (see plot): Inference grossly in error! 
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Analysis 3 -- Look at all the data
••Use subject-matter insight -

- Arrhenius model:
v ∝ exp(E/abs. Temp)

Chart: ln(v) vs. 1/(abs. Temp)

Both the model predictions 
and the experimental data 
exhibit fairly good linearity on 
these scales, BUT with 
different slopes. 

Whatcha gonna do?

Arrhenius Plot: Predictions and Data
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Analysis of Prediction Errors:

Linear model: b(x) vs. x
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Possible Further Actions
• Do bias-corrected prediction:

– yM(x) + b(x) +/- prediction-error limits,
where b(x) is estimated bias-correction function
» weak science - unappealing
» not feasible in predictions for applications

• Fix/improve the model
– modify parameter estimates (activation energies)
– put more, or better, physics/chemistry into model

» incorporate specimen-specific variables (w’s) into model
– requires measuring those variables on each specimen

» expensive, time-consuming

• Abandon theoretical model; use semi-empirical 
model (for limited purpose of predicting front 
velocity in experimental region) 
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“Pseudo-Fixing” CPUF
CPUF has been neither fixed 
nor its parameter estimates 
updated, but we can do 
analyses that illustrate the 
inferences that would result 
from these fixes.

1. (updated parameter 
estimates):

Use a linear model of ln(v) 
vs. 1/K (inv. target 
absolute temp.) as an 
approximate CPUF; use 
data to estimate slope and 
intercept

Arrhenius Plot: Predictions and Data
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Analysis 4 --
Updated Parameter Estimates

•Regression analysis of ln(vE) vs. 1/K provides “updated” 
estimates of slope and intercept

•Results*:
– Fitted line:  ln(v) = 2.34 - 3858*(1/K)
– Residual standard deviation:  s = .11, on 6 df

•Statistical prediction intervals in regression situation 
(which can be obtained by standard methods) -- next 
slide

*Notes. Call this a semi-empirical model. Theory is the basis 
for assumed linearized Arrhenius relationship.  Data support 
assumption of linearity and provide parameter estimates.

A better fit might be obtained if we used average measured 
base plate temp., rather than the target temp.



46

Statistical Prediction Intervals
Plot shows regression fit and 
90% statistical prediction 
intervals*, on original velocity 
and temperature axes.

Prediction interval width is 
temperature-dependent: there 
are wider logarithmic error 
limits the greater the distance 
from the center of the data.

*assump.: log-errors Normally 
distributed, homogeneous variances

Data-Based Predictions, 90% Pred. Interval
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Interpretation: At a given temperature, with 90% confidence the 
measured velocity in a future experiment like these would fall within 
the indicated limits
Inference to 1500C? 2000C?  Other geometries? … ?  
Requires foam-expert judgment
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Analysis 5 --
Alternative Bias Correction

Comparison of Experimental and Model Results
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Regress lnvE on lnvM:

Assumption (testable): prediction 
error depends on x only via vM.
(Note. Great dimension reduction!)

Results:
fit: lnvE = -.47 + .68*lnvM

resid. stdev. = .07, 6df

In contrast to Arrhenius-based 
linear approximation, this analysis 
makes direct use of the model.

Bias-corrected prediction: 
substitute calculated vM into above 
linear model
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Statistical Prediction Interval
Better fit and tighter 
prediction intervals 
than Approach 1 (slide 
13) because:

– variability of 
boundary conditions 
is accounted for 
and 

– there is better log-
linearity in the 
relationship.

Regression Results and 90% Statistical Prediction Intervals: 
Original Scales
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Comment: A “fixed” CPUF (approach 2) might 
lead to similar results but with a near 45deg 
line relationship between vE and vM.
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Issue: Model vs. Experiment
• The estimated predictive capability 

of a semi-empirical model 
constructed from the validation 
experiments can be comparable to 
the estimated predictive capability 
of a computational model plus error 
data obtained from the same 
validation experiments.

• A computational model should 
extrapolate better for nominal 
predictions, but extrapolation of 
prediction errors is the same 
problem in both cases.

• Kinda makes you wonder - is it all 
worthwhile?

Regression Results and 90% Statistical Prediction Intervals: 
Original Scales
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Model vs. Experiment, cont.
• Fact of Life: Linearity won’t necessarily hold in 

other situations for which we need predictions –
e.g., confined, pressurized, … environments
– It’s easier to do model calculations in new situations 

than to do physical experiments, ... 

• BUT we will still need experiments in such 
conditions to evaluate predictive capability in those 
situations, BECAUSE ...  

• We generally cannot assume that predictive 
capability will travel (from explored x-space to 
unexplored).

• MESSAGE: When you have a choice, think about it!
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Adjustment for Measurement Error
• There has been no informed evaluation of measurement 

error w.r.t. ln(v).

• Velocity, v, should be measured fairly precisely because 
major sources of error should cancel out 

• Hyothetically, suppose v is measured with relative std 
dev of 2%.  Then, std dev of ln(v) is .02.

• For the regression analysis, lnvE vs. lnvM, the resulting 
adjusted standard deviation of prediction error would be:

– sadj = √(.072 - .022) = .067

– negligible effect, in this hypothetical case
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Case Study – Comments
• Small no. of experiments, limited exploration of x-space: 

representative of what will be possible in high-level 
testing
– A more efficient experimental design would have helped 

some

• Predictive capability is not too good
– CPUF doesn’t get the temperature effect right

» Model’s sensitivity to temperature is about 2x that of Nature

• The data used to evaluate predictive capability can be 
used to construct a semi-empirical model directly
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Case Study Conclusions - Methodology

Statistical analysis 
methodology for evaluating 
predictive-capability is:

– workable
– inexpensive
– illuminating
– communicable

But the results may not be 
as broadly applicable or 
precise as we would like or 
need them to be
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Summary
Measuring predictive-

capability poses numerous 
difficult problems:
– scientific, experimental, 

statistical, organizational, 
management Configuration
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•

Statistical ideas and methods can contribute 
to successful resolution of these problems, 
or clear understanding of why they cannot 
be solved

We all gotta work 
together
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